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This paper presents original solutions of the force–displacement relationships for a rigid
spherical bead embedded in a composite medium made of n-isotropic linearly viscoelastic
finite layers. Analytical solutions were provided for both compressible and incompressible
elastic and viscoelastic solids, assuming no-slip conditions between the rigid spherical
inclusion and its adjacent medium as well as between each layer of the composite medium.
Thanks to these general formulas, we investigated the effect of finite size media on the
force-bead displacement response and derived the exact relationship linking apparent
and intrinsic elastic moduli of the medium. Such theoretical solutions can be interestingly
applied to identify layer’s heterogeneities and to characterize accurately the mechanical
properties of living material like cells when using translational microrheology assays. This
point is especially illustrated by modeling animal cell cytoskeleton as a bilayer composite
medium probed by magnetic tweezers. Interestingly, our results highlighted the influence
of finite cell size effects, while allowing to distinguish viscoelastic properties of deep cell
cytoskeleton from those of cellular cortex. Moreover, we established that translational
microrheology experiments are well suited to characterize locally the viscoelasticity prop-
erties of the layer in contact with the probe as soon this layer thickness is larger than ten
bead diameters.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Microrheology is now established as an important exper-
imental tool for probing mechanical properties of living
cells. Indeed it is now widely recognized that cell behavior
heavily rely on their mechanical properties and intracellular
stress distribution (Ingber, 2006; Wang et al., 2001). Several
micromanipulation techniques have been developed
during the past 10 years for probing biological materials
. All rights reserved.
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(micropipette aspiration (Boudou et al., 2006; Sato et al.,
1990), cell poking (Coughlin and Stamenovic, 2003;
Goldmann et al., 1998), atomic force microscopy (Dimitria-
dis et al., 2002; Dulinska et al., 2006), microplates (Caille
et al., 2002; Desprat et al., 2005), optical tweezers (Balland
et al., 2005; Mills et al., 2004; Kamgoué et al., 2007), optical
stretchers (Ananthakrishnan et al., 2006; Wottawah et al.,
2005), magnetic tweezers (de Vries et al., 2005; Walter
et al., 2006), magnetic twisting cytometry (Lenormand
et al., 2004; Ohayon et al., 2004; Ohayon and Tracqui,
2005; Wang and Ingber, 1994) or particle tracking
(Lau et al., 2003; Salamon et al., 2006; Tseng et al., 2002)),
and appropriated mechanical models need to be designed
and refined in order to quantify accurately the mechanical
properties of living cells or tissues from the knowledge of
their mechanical responses. Indeed, the cell cytoskeleton,
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Fig. 1. Schematic picture describing the micromanipulation setup used
by de Vries et al. (2005) and supporting our idealized view of the isolated
cell-bead system. (A–A) Side view illustrating the cell adhesion on the
upper glass surface, which supports the spherical cell geometry we
considered in our model. (B–B) Upper view indicating how translational
magnetic forces are transmitted to the intracellular bead.
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composed of actin filaments, intermediate filaments and
microtubules, is a heterogeneous network that defines the
overall cell stiffness. Different micromanipulations studies
on cells, conducted in association with drugs inducing actin
or microtubule disassembly, indicate that living cells behave
mechanically as multilayered structures for which superfi-
cial and deep effects can be identified. This leads to the con-
sideration of a cortical cytoskeleton and a deep cytoskeleton,
with different mechanical properties that could be related to
actin polymerisation/depolymerisation in the cortical layer
and to microtubule polymerisation/depolymerisation in
the deep cytoskeleton. Since the cortical layer is composed
of a dense network of actin filaments, it is often modeled
as a viscoelastic medium with a dominant solid behaviour.
On the other hand, the viscous cytoplasm affects more
strongly the mechanical properties of the deep cytoskeleton,
which is then often modeled as a viscoelastic medium with a
dominant fluid behaviour.

Magnetic cytometry experiments were first conducted
to estimate adherent cell viscoelasticity from the cell re-
sponse to the displacement of beads attached onto the cel-
lular membrane (Crick and Hughes, 1950; Ziemann et al.,
1994; Bausch et al., 1999; Hosu et al., 2003; Laurent
et al., 2003). More recently, de Vries et al. (2005) designed
and constructed an original multi-pole magnetic tweezers
setup for investigating intracellular mechanical properties.
While providing a real technical advance, such experi-
ments may provide accurate estimates of cell mechanical
properties only if experimental data analyses are based
on reliable mechanical model of the cell response.

Considering the cell as a unique homogeneous isotropic
medium, Lin et al. (2005) presented an elegant elastic solu-
tion for such translational microrheology experiments,
taking into account cell compressibility and finite size.
Nevertheless, this solution – used to extract the Young’s
modulus from the force–displacement measurements – is
only valid when cell heterogeneity and viscoelastic effects
are neglected. However, it has been reported that cell
heterogeneity may be important in several experiments
conducted on biomaterials or cells (Lim et al., 2006;
Tracqui and Ohayon, 2007; Kamgoué et al., 2007).

In this context, we present original solutions of the
force–displacement relationships for a rigid spherical bead
embedded in a composite medium made of n-isotropic lin-
early viscoelastic finite layers. Thus, this study extends the
approach of Lin et al. (2005) and provides exact expression
of the force resulting from a given imposed translation as a
function of the relative size, shear modulus and Poisson’s
ratio of each layer of the composite medium. We first de-
rived an original solution for purely elastic compressible
layers assuming no-slip boundary conditions at the bead-
medium interface as well as between consecutive layers,
up to a fixed external surface. Then, this analytical elastic
solution was successfully extended to viscoelastic n-layer
composite medium using the elastic-viscoelastic corre-
spondence principle (Findley et al., 1989).

Interestingly, our results highlight the influence of finite
cell size effects. We especially point out the existence of a
critical relative thickness value of the first layer in contact
with the microbead, above which the infinite monolayer
solution of Phan-Thien (1993) remains valid. In addition,
our theoretical solution allows to distinguish viscoelastic
properties of the deep cell cytoskeleton from those of the
cellular cortex.
2. Idealization of the cell-bead system and related
mechanical problem formulation

Fig. 1 illustrates the experiment performed by de Vries
et al. (2005) to characterize the mechanical properties of
isolated cells. In their experiment, a translational magnetic
force is applied on an intracellular spherical bead. Let us
first notice that such micromanipulation does not provide
directly a quantification of elastic Young’s modulus of the
probed cellular material (Ohayon et al., 2004; Ohayon
and Tracqui, 2005). In the case of a rigid spherical bead,
submitted to a known applied force ðFÞ and fully embed-
ded in an infinite isotropic incompressible linear elastic
medium, one can estimate the apparent medium stiffness
modulus ðEappÞ from the resulting bead translation ðdÞ as
(Phan-Thien, 1993):

Eapp ¼
2F
Sd

ð1Þ

where S ¼ 4pR2
0 is the spherical bead surface, R0 is the

bead radius and d ¼ d=R0 is the normalized rigid bead
translation. This apparent stiffness modulus differs from
the Young’s modulus of the layer surrounding the micro-
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bead, since it may integrated geometrical effects such as
medium finite thickness. In this study, we are first looking
for the exact mathematical solution defining the relation-
ship between the applied force and the resulting transla-
tion of a single spherical rigid bead of radius R0

embedded in a composite structure made of n isotropic,
spherical, concentric and finite compressible elastic layers
of radius Ri, Young’s modulus EðiÞ and Poisson’s ratio mðiÞ,
where i ¼ 1;n.

For this multilayer medium we will demonstrate that it
exists a correcting function U which relates the apparent
stiffness modulus ðEappÞ to the Young’s modulus ðEð1ÞÞ of
the layer with thickness ðR1 � R0Þ surrounding the bead
(Fig. 2) through a relationship of the form:

Eapp ¼ U Eð1Þ ð2Þ

The first original contribution of our work is to provide the
analytical expression of U as a function of the mechanical
properties and geometries of the n elastic layers. In addi-
tion, this theoretical development has been extended to
the case of composite medium made of n viscoelastic con-
centric layers.

3. Analytical solution for purely elastic n-layer medium

The theory of linear elasticity was used to solve the
problem defined above, assuming that each layer behaves
as an isotropic linearly elastic medium following the con-
stitutive Hooke’s law. Thus, in each layer ði ¼ 1;nÞ, the con-
dition for local equilibrium may be expressed in terms of
the displacement vector uðiÞ as (Landau and Lifshitz,
1959; Green and Zerna, 1968)

r r � uðiÞ þ ð1� 2 mðiÞÞ r2 uðiÞ ¼ 0: ð3Þ

The following boundary conditions were considered in our
study: (i) no-slip condition was assumed at the bead-cell
interface (at r ¼ R0), (ii) a small translation dðtÞ was im-
posed on the rigid bead, (iii) perfect adhesion was assumed
at the interface between each pair of adjacent layers (at
r ¼ Ri; i ¼ 1;n� 1), and (iv) zero displacements were im-
posed on the external medium surface ðr ¼ RnÞ. Such con-
ditions are expressed respectively as

uð1ÞðR0; tÞ ¼ dðtÞ ðcosðhÞer � sinðhÞehÞ ð4Þ
Fig. 2. Schematic representation of the n-layer viscoelastic medium made
of successive concentric layers with radius Ri . For symmetry reason, only
one fourth of the full geometry was presented.
uðiÞðRi; tÞ ¼ uðiþ1ÞðRi; tÞ; i ¼ 1;n� 1 ð5Þ

rðiÞðRi; tÞ er ¼ rðiþ1ÞðRi; tÞ er ; i ¼ 1; n� 1 ð6Þ

uðnÞðRn; tÞ ¼ 0 ð7Þ

whereðer ; eh; e/Þ and ðr; h;/Þ respectively denote the spher-
ical unit base vectors and the associated physical coordi-
nates, while t is time. Interestingly, a displacement field
solution for Eq. (3), which satisfies the boundary condi-
tions Eqs. (4)–(7), can be obtained using the method of
variables separation and looking for a displacement vector
solution in each layer uðiÞ of the form

uðiÞðr; h;/Þ ¼ wðiÞr cosðhÞer þwðiÞh sinðhÞeh ð8Þ

where wðiÞr and wðiÞh ði ¼ 1;nÞ become the problem un-
knowns, with Ri�1 6 r 6 Ri and i ¼ 1;n� 1. For having such
solution fields uðiÞ satisfying the local equilibrium condi-
tion Eq. (3), the unknowns functions were found to be

wðiÞr ðrÞ ¼ Ai þ
Bi

r
þ Ci r2 þ Di

r3 ð9Þ

wðiÞh ðrÞ ¼ �Ai �
Bi

4 r
3� 4mðiÞ

1� mðiÞ

� �
þ Ci r2 3� 2mðiÞ

1� 4mðiÞ

� �
þ Di

2r3

ð10Þ

where the 4n coefficients Ai;Bi;Ci and Di ði ¼ 1;nÞ have
been determined using the boundary and continuity condi-
tions Eqs. (4)–(7). Details of this resolution are given in
Appendix A.

Taking benefit of our solution of the elasticity problem,
the total force applied on the rigid bead F can then be
determined by integrating the stresses over the surface of
the rigid sphere.

F ¼ �
Z p

0

Z 2p

0
rð1ÞjR0

er R2
0 sinðhÞdhd/ ð11Þ

The apparent stiffness was found by carrying out this inte-
gration and using the boundary conditions (4)–(7). Then,
one gets:

Eapp ¼
2
3
ðM11�M12Þð2M23þM24Þ

M13 M24�M14 M23
þð2M13þM14ÞðM22�M21Þ

M13 M24�M14 M23

� �
ð12Þ

where Mij ði; j ¼ 1;4Þ are the components of a global trans-
formation matrix Mn which may be written as:

Mn ¼ Pn Pn�1; . . . ;P2 P1 ð13Þ

with

Pi ¼ Xi bi vi v�1
i�1 b�1

i X�1
i ð14Þ

where viðRiÞ; biðmðiÞÞ and XiðlðiÞÞ are geometrical, compress-
ibility and continuity matrices depending of the layer ra-
dius Ri, Poisson’s ratio mðiÞ and shear modulus lðiÞ of the
ith layer respectively. The analytic expressions of these
matrices are detailed in Appendix A.

We checked the correctness of the theoretical solution
we obtained for a bilayer composite medium by comparing
the theoretical value EappðthÞ and the numerically estimated
value EappðfeaÞ, derived from the numerical solution of the
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elasticity problem performed by a 2D-axisymetric FE analy-
sis (Ansys 11, Canonsburg, PA, USA). Taking a refined enough
mesh to insure accuracy of the numerical computations, we
found that for all different parameters sets we considered,
the relative error 100� ðEappðfeaÞ� EappðthÞÞ=EappðthÞ is
lower than 0.5%.
Fig. 3. Viscoelastic model template used in our study to describe
mechanical properties of each layer. Notice that by setting gðiÞ1 ¼ 0, one
obtains a three-parameter solid model, while lðiÞ1 ¼ 0 corresponds to a
three-parameter fluid model (Flügge, 1967).
4. Analytical solution for viscoelastic n-layer medium

4.1. Background: Solution procedure for the viscoelastic
problem

In the general case, the constitutive law for a linear vis-
coelastic material is given through a convolution integral
(Fung, 1981; Findley et al., 1989). For the ith layer and
assuming a motion starting at time t ¼ 0, the creep form
of this integral is:

�ðiÞðtÞ ¼
Z t

0
SðiÞðt � sÞ :

@rðiÞðsÞ
@s

ds ð15Þ

where SðiÞðtÞ is the fourth-order creep tensor (Georgievskii,
2007) and ‘‘:” denotes the double contracted product.
Assuming that each layer is an isotropic medium, the
stress-strain relationship may be split into deviatoric and
volumetric components such as (Cheng et al., 2005; Xu
et al., 2007):

SðiÞðtÞ ¼ J

2lðiÞðtÞ þ
K

3KðiÞðtÞ
ð16Þ

where lðiÞðtÞ and KðiÞðtÞ are two creep functions associated
with the ith layer; K ¼ I� I=3 is the hydrostatic part of the
symmetric fourth-order identity tensor I (with Cartesian
components Iijkl ¼ ðdikdjl þ djkdilÞ=2, where dij is the Kro-
necker delta) and J ¼ I�K is its deviatoric part (Cheng
et al., 2005; Xu et al., 2007).

In order to derive the viscoelastic solution, we used the
elastic-viscoelastic correspondence principle (Findley
et al., 1989; Georgievskii, 2007). Briefly, performing the La-
place transformation of the function �ðiÞðtÞ given by Eq.
(15), one can derive a complex form of the Hooke’s law as

��ðiÞ ¼ eSðiÞ : �rðiÞ ð17Þ

with

eSðiÞ ¼ J

2 ~lðiÞ
þ K

3 eK ðiÞ ð18Þ

where eSðiÞðsÞ ¼ s LfSðiÞðtÞg is the Laplace–Carson trans-
form of the fourth-order creep function of the ith layer;
~lðiÞ and eK ðiÞ are the Laplace–Carson operators of the visco-
elastic material parameters (Findley et al., 1989; Cheng
et al., 2005; Georgievskii, 2007; Xu et al., 2007). Then,
based on the similarity between elastic and viscoelastic
systems of equations to be solved in both cases, the corre-
spondence principle allows – knowing the elastic solution
of the associated system – to derive the viscoelastic one by
replacing all the elastic material moduli by their corre-
sponding Laplace–Carson operators. As a result, the visco-
elastic solution is first given in the complex space and
needs then to be expressed in the time space using the in-
verse Laplace transform (Findley et al., 1989; Georgievskii,
2007).

4.2. Solution of the viscoelastic problem

The viscoelastic solution was obtained by assuming that
the viscoelastic behaviour of each layer i may be described
by a combination of two Kelvin models acting in series
(Findley et al., 1989; Flügge, 1967).

According to this viscoelastic model (Fig. 3), the Laplace
transform of the linear constitutive equation of the ith
layer yields

X1

m¼0

PðiÞm sm

 !
: �rðiÞ ¼

X2

n¼0

QðiÞn sn

 !
: ��ðiÞ ð19Þ

where PðiÞm and QðiÞn are the fourth-order tensors describing
the viscoelastic behaviour of each layer. These tensors are
defined by

P
ðiÞ
0 ¼ ðl

ðiÞ
1 þ lðiÞ2 ÞJþK ð20Þ

P
ðiÞ
1 ¼ ðg

ðiÞ
1 þ gðiÞ2 Þ J ð21Þ

Q
ðiÞ
0 ¼ 2 ðlðiÞ1 lðiÞ2 Þ Jþ 3KðiÞ K ð22Þ

Q
ðiÞ
1 ¼ 2 ðlðiÞ1 gðiÞ2 þ lðiÞ2 gðiÞ1 Þ J ð23Þ

Q
ðiÞ
2 ¼ 2 ðgðiÞ1 gðiÞ2 Þ J ð24Þ

where lðiÞj and gðiÞj ðj ¼ 1;2Þ are respectively the shear
stress modulus and damping viscosity, while KðiÞ stands
for the bulk modulus of the ith layer. Then, by substituting
in relation Eq. (19) all tensors by their expressions defined
in Eqs. (20)–(24), and rewriting the equation in the form of
Eq. (18), it becomes straightforward to identify, thanks to
the elastic-viscoelastic correspondence principle, the
Laplace–Carson transform of the shear modulus as

~lðiÞ ¼
lðiÞ1 lðiÞ2 þ lðiÞ1 gðiÞ2 þ lðiÞ2 gðiÞ1

� �
sþ gðiÞ1 gðiÞ2

� �
s2

lðiÞ1 þ lðiÞ2 þ gðiÞ1 þ gðiÞ2

� �
s

ð25Þ

Since we assumed that viscoelasticity only affects the devi-
atoric part of the tensors, i.e. eK ðiÞ ¼ KðiÞ, one can directly ob-
tain the Laplace–Carson transform of the Young’s modulus
and Poisson’s ratio using the classical relations (Findley
et al., 1989)
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eEðiÞ ¼ 9KðiÞ ~lðiÞ

3KðiÞ þ ~lðiÞ
; emðiÞ ¼ 3KðiÞ � 2 ~lðiÞ

6KðiÞ þ 2 ~lðiÞ
: ð26Þ

Then, Eq. (12) allows us to derive the apparent elastic com-
plex modulus gEappðsÞ from the Laplace–Carson transformgMnðsÞ of the global transformation matrix Mn given in
Eq. (13). Finally, with consideration of Eq. (1), the visco-
elastic response for our problem was obtained by taking
the inverse Laplace transform of the equationeF ¼ SeEapp

~d=2: ð27Þ

The normalized displacement history function dðtÞ result-
ing from the input force history function FðtÞ is then given
by

dðtÞ ¼ 2
S
�L�1fðeEappÞ�1 �LfFðtÞgg: ð28Þ

In the same way, using the inverse Laplace–Carson trans-
form leads to the two time-dependent viscoelastic functions
EðiÞðtÞ and mðiÞðtÞ. The inverse Laplace transform was com-
puted using a numerical Laplace transform inversion (NLTI)
algorithm (Gaver-Stehfest algorithm, Stehfest (1970)),
which is described in Appendix B.
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Fig. 4. Influence of monolayer thickness and compressibility on the
estimation error made when approximating the intrinsic Young’s mod-
ulus E by the apparent Young’s modulus Eapp . Relative error is computed
as DE ¼ ðEapp � EÞ=E ¼ ðU� 1Þ � 100%.
5. Application of our solutions to mono and bilayer
composite media

In the following section, we will exemplify the use of
our theoretical solution for the characterization of the
mechanical properties of cells probed by intracellular
microrheology experiments. Identification of cell mechan-
ical properties will be conducted by assuming that the cell
behaves, first as a monolayer and second, as a bilayer
medium.

5.1. The cell as a monolayer medium

5.1.1. Elastic solution
The global transformation matrix for an elastic mono-

layer media (n ¼ 1; Eð1Þ ¼ E and mð1Þ ¼ m) is, according to
Eq. (13), M1 ¼ P1. Using Eq. (12), we recover in this case
the mathematical solution previously derived by Lin et al.
(2005), namely

Eapp ¼ Uðq; mÞ E ð29Þ

where Uðq; mÞ is the correcting function to apply to the real
Young’s modulus E in order to take into account the influ-
ence of medium finite size and compressibility. This cor-
recting function, which depends on a geometrical factor
through the normalized radius q ¼ R1=R0, may be written
as

U ¼ 24ð1� mÞð2� 3mÞð1þ mÞ�1ðq5 þ q4 þ q3 þ q2 þ qÞ
5qð1þ q� q2 � q3Þ þ 4ð2� 3mÞð5� 6mÞðq5 � 1Þ

ð30Þ

from which several particular solutions can be derived:

(i) for infinite compressible medium, U tends to
Uðq!1Þ ¼ 6ð1� mÞ
ð1þ mÞð5� 6 mÞ ð31Þ

(ii) for finite incompressible medium, U is equal to

Uðm! 1=2Þ ¼ 4ðq5 þ q4 þ q3 þ q2 þ qÞ
ð4q2 þ 7qþ 4Þðq� 1Þ3

ð32Þ

(iii) for infinite incompressible medium, U tends, as
expected, to

Uðq!1; m! 1=2Þ ¼ 1 ð33Þ
Taking benefit of this analytical solution, we originally
investigated the influence of compressibility and finite size
layer on the medium elastic response.

5.1.2. Influence of compressibility and finite size
To analyse the compressibility and finite size effects on

the Young’s modulus estimation, we computed the ampli-
tude of the correcting function Uðq; mÞ as a function of Pois-
son’s ratio m and normalized radius q ¼ R1=R0.

We found that the relative error DE ¼ ðEapp � EÞ=E ¼
ðU� 1Þ � 100% made on the real Young’s modulus E be-
comes lower than approximately 10% as soon as the mono-
layer external radius is approximately twenty times higher
than the rigid bead radius (Fig. 4). In order words, the com-
pressibility and finite size effects could be neglected when
the relative thickness q is larger than 20.

5.1.3. Viscoelastic solution
To exemplify the cellular viscoelastic response, we con-

sidered the data of de Vries et al. (2005). In their experi-
mental work, they performed original three-pole
magnetic tweezers experiments on cells, using magnetic
bead of 1:05 lm diameter submitted to force step of mag-
nitude F0 ¼ 60pN. Among possible models of cell medium
(Lim et al., 2006), we considered an incompressible three-
parameter fluid monolayer model which corresponds to
l1 ¼ 0 in Fig. 3. Then, using an optimization procedure
(nonlinear Levenberg–Marquardt algorithm, Levenberg
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(1944) and Marquardt (1963)), we identified the optimum
solution set of viscoelastic constants that fits accurately de
Vries et al. (2005) experimental data (Fig. 5). Such identifi-
cation was performed for increasing values of normalized
inner radii q1, taken in the range [3–100].

We successfully validated our transformation matrix
method by considering the simple case of an incompress-
ible infinite monolayer. Indeed, the numerical solution ob-
tained for infinite medium (i.e. q > 30) agrees (relative
error less than 1%) with the viscoelastic response (q!1,
marked �material parameters in Fig. 5). Formally, we have
dðtÞ ¼ F0

6pR0

t
g1
þ 1

l2
ð1� expð�l2 t

g2
ÞÞ

� �
HðtÞ ð34Þ
where we assumed the input force signal to be a step force
distribution of magnitude F0 ðFðtÞ ¼ F0 HðtÞ with HðtÞ the
Heaviside step function).

Originally, our results highlight the influence of the fi-
nite cell size on the quantification of the viscoelastic
parameters (q ¼ 5 corresponding to a cellular radius of
R1 ¼ 2:62 lm, Fig. 5). In such a case, considering the cell
as an infinite medium may bias the identified values of vis-
coelastic constants up to a factor 1.5.
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ental measurements of the translational magnetic tweezers on living
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5.2. The cell as a bilayer medium

5.2.1. Elastic solution
For an elastic bilayer medium ðn ¼ 2Þ, the global trans-

formation matrix, according to Eq. (13), takes the form
M2 ¼ P2 P1. As presented for the monolayer case studied
previously (Eq. (29)), we express the analytical elastic solu-
tion in terms of the correcting function to be applied to the
Young’s modulus of the first layer Eð1Þ,

Eapp ¼ Uðqi; mðiÞ;b2Þ Eð1Þ ð35Þ

where the correcting function U depends on the two nor-
malized radii qi ¼ Ri=R0 ði ¼ 1;2Þ, the Poisson’s ratio
mðiÞ ði ¼ 1;2Þ and the shear moduli ratio b2 ¼ lð2Þ=lð1Þ.
Interestingly, a simple analytical force–displacement rela-
tionship was obtained when the two layers are incom-
pressible ðmð1Þ ¼ mð2Þ ¼ 0:5Þ and when the external radius
R2 tends to infinity ðq2 !1Þ, i.e.

F ¼ 1
2

S Eð1Þ U d ð36Þ

where the correcting function U reads:

U ¼ 4ðq6
1 � q1Þb2

2 þ ð6q6
1 þ 4q1Þb2

f1ðq1Þ b2
2 þ f2ðq1Þ b2 þ 6q5

1 þ 4
: ð37Þ

The functions fi, describing the influence of the inner layer
size effects onto the apparent Young’s modulus, take the
form

f1ðq1Þ ¼ 4q6
1 � 9q5

1 þ 10q3
1 � 9q1 þ 4 ð38aÞ

f2ðq1Þ ¼ 6q6
1 þ 3q5

1 � 10q3
1 þ 9q1 � 8: ð38bÞ

Notice that, when the two layers have similar mechanical
properties ðb2 ¼ 1Þ, the function U in Eq. (37) reduces to
1. This simplified solution was used to investigate the
influence of the shear moduli ratio b2 and the normalized
finite size q1 of the inner layer on the mechanical response
of an incompressible bilayer elastic medium.

The correcting function appears to be very sensitive to
both geometrical and rheological cellular parameters
(Fig. 6). For an external cellular cortex much stiffer than
the internal layer (e.g., if b2 P 10), and for small bead radii,
the error made when considering the apparent stiffness
as the intrinsic stiffness of the first layer is lower than
25% if 10 < q1 < 20 and lower or equal to 10% if q1 > 20
(points A and B, Fig. 6). However, if the external cellular
medium is much softer than the internal layer (e.g., if
b2 < 10�1), then beads with smaller radius are needed to
reach similar acceptable error amplitude, but with en-
larged sensitivity to the bead radius, i.e. 30 < q1 < 100
for 25% > DE > 10%.

5.2.2. Viscoelastic solution
In agreement with proposed rheological models of cells

behaviour (Lim et al., 2006), we considered the solution
obtained for a viscoelastic bilayer medium by assuming
that the inner layer behaves as a three-parameter fluid
model, while the external layer responds as a three-param-
eter solid model. We again gave special consideration to
the experiment of de Vries et al. (2005) where bead diam-
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eters were close to 1:05 lm. The cell geometry was
approximated by a spherical shape of external radius equal
to 2:62 lm and a cellular cortex thickness of 0:3 lm (i.e.
q1 ¼ 5 and q2 ¼ 5:57).

Notice that two sets of experimental results performed
on the same biological sample but with distinct bead sizes
– one with small bead radius ðq1 > 10Þ and the other with
large beads ðq1 < 10Þ – are necessary to extract accurately
the material moduli of the two cellular layers. Unfortu-
nately, we did not find in the literature such sets of exper-
imental results. Therefore, in addition to the experimental
results of de Vries et al. (2005), we followed recent conclu-
sions of Wei et al. (2008) reporting a time-dependent
Young’s modulus of the cellular cortex Eð2ÞðtÞ that is higher
than that of the deep cytoskeleton Eð1ÞðtÞ. Thus, we im-
posed as viscoelastic moduli for the cellular cortex
lð2Þ1 ¼ 360 Pa;lð2Þ2 ¼ 420 Pa and gð2Þ2 ¼ 48 Pa � s. We fur-
thermore considered that the cellular cortex thickness is
0:3 lm. Then, an optimization procedure was used to iden-
tify the material moduli of the inner layer cytoskeleton
layer, taking initial values q1 in the range [3-100]. Fig. 7
presents the best viscoelastic moduli we found when char-
acterizing the deep cytoskeleton.

Interestingly, these results clearly emphasize the
importance of distinguishing deep cytoskeleton from cellu-
lar cortex and highlight the influence of the finite cell size.
Indeed, in such case, the results given in Fig. 7 show that
the amplitude of the correcting factor is crucial, (up to a
factor 2 particularly for the rheological constant gð1Þ2 ). No-
tice that such results appear to be different from those ob-
tained when the cell was modeled as a monolayer
(compare q ¼ 5 in Fig. 5 and q1 ¼ 5 on Fig. 7). Considering
the cell as a monolayer instead of a bilayer may bias the va-
lue of the inner layer viscoelastic constants up to 50%.
6. Conclusion

The main purpose of this study was to provide original
solutions of the force–displacement problem arising when
probing a composite medium made of n-isotropic linearly
elastic or viscoelastic finite layers with a rigid spherical
bead in it. Our solutions may be computed rather easily
and could notably improve the quantification of cell
mechanical properties from experimental force–displace-
ment measurements obtained in micromanipulation as-
says (de Vries et al., 2005; Wei et al., 2008). In this
context, we also provided here an original method to char-
acterize the viscoelastic properties of multilayered media
from experimental data by using the elastic-viscoelastic
correspondence principle (Findley et al., 1989). Our study
was restricted here to the coupling of three-parameter so-
lid and fluid models, which are often used to describe the
viscoelastic response of adherent cells (Bausch et al.,
1999; Hosu et al., 2003; Laurent et al., 2003; de Vries
et al., 2005). However, the same approach could be ex-
tended to other viscoelastic models, thus providing a
rather general framework which may help to quantify
more accurately the mechanical properties of cells probed
by translational magnetic tweezer technique. In addition,
this study could help designing new experimental proto-
cols when using intracellular translational magnetic twee-
zers experiments performed either under static or dynamic
modes.

Nevertheless, several limitations deserve to be pointed
out at this stage in our work. First, we restricted our study
to the small strain domain, i.e. to small bead displace-
ments. Second, our analytical solutions are given under
the assumption of perfect adhesion between the inner rigid
bead and the first layer. Finally, the zero-displacement of
the external layer is another assumption which may be
only partly fulfilled for adherent cells.
6.0.3. Biological implications

By a precise analysis of the influence of geometrical
constraint on the mechanical response, our results could
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have several biological implications. Indeed, such accuracy
is of special interest in experimental studies focusing on
the role played by cell mechanical properties in the control
of cellular processes. Notably, we found that finite size ef-
fects do not significantly influence the identification of the
shear modulus of the layer in contact with the bead (inner
layer) as soon as its thickness is larger than 10 bead diam-
eters. More globally, the results presented here may pro-
vide a theoretical basis for probing, through controlled
bead translation, the intracellular microrheology and par-
ticularly the cortex or other layers such as adhesion layers
or extracellular matrix layer. Such quantification of cells
viscoelastic properties could be used to investigate the cel-
lular structural changes induced by stimulating or damag-
ing agents (Trepat et al., 2004), as well as by endogenous
cytoskeleton remodeling (An et al., 2006).
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Appendix A. Matrix formulation

A.1. Solution of the elastic problem

In spherical coordinates, the elastic solution for the dis-
placement is given by Eqs. (9) and (10). Using elastic prop-
erties, it comes for the stresses

rðiÞrr ¼lðiÞ Bi

r
2�mðiÞ

1�mðiÞ

� �
�4Ci r2 1þmðiÞ

1�4mðiÞ

� �
�6

Di

r3

� �
cosðhÞ

r

ð39aÞ

rðiÞrh ¼lðiÞ Bi

2r
1�2mðiÞ

1�mðiÞ

� �
�2Ci r2 1þmðiÞ

1�4mðiÞ

� �
�3

Di

r3

� �
sinðhÞ

r

ð39bÞ

rðiÞhh ¼lðiÞ Bi

4r
1�2mðiÞ

1�mðiÞ

� �
�8Ci r2 1þmðiÞ

1�4mðiÞ

� �
þ3

Di

r3

� �
cosðhÞ

r

ð39cÞ
A.2. Expression of the coefficients Ai;Bi;Ci and Di

While writing the elastic solution in the form

wðiÞr ðr; hÞ ¼
uðiÞr ðr; hÞ
cosðhÞ and wðiÞh ðr; hÞ ¼

uðiÞh ðr; hÞ
sinðhÞ

sðiÞrr ðr; hÞ ¼
r rðiÞrr ðr; hÞ

cosðhÞ and sðiÞrh ðr; hÞ ¼
r rðiÞrh ðr; hÞ

sinðhÞ

it comes for the boundary conditions at the bead-cell inter-
face and on the external radius expressed in Eqs. (4) and
(7), the form

wð1Þr ðR0; hÞ ¼ d and wðnÞr ðRn; hÞ ¼ 0 ð41aÞ

wð1Þh ðR0; hÞ ¼ �d and wðnÞh ðRn; hÞ ¼ 0 ð41bÞ
sð1Þrr ðR0; hÞ ¼ k1 and sðnÞrr ðRn; hÞ ¼ k3 ð41cÞ

sð1Þrh ðR0; hÞ ¼ k2 and sðnÞrh ðRn; hÞ ¼ k4 ð41dÞ

Let us build the boundary conditions vectors
c0 ¼ ½d;�d; k1; k2�T for boundary at the bead-cell interface
and cn ¼ ½0;0; k3; k4�T for them on the external surface in
which ki are four unknown functions explicitly linked to
stress values. Using the continuities conditions between
each layer expressed in Eqs. (5) and (6), one can build
the linear system

c0 ¼ X1 b1 v0 a1 ð42aÞ

Xiþ1 biþ1 vi aiþ1 ¼ Xi bi vi ai i ¼ 1; . . . ; n� 1 ð42bÞ

cn ¼ Xn bn vn an ð42cÞ

where ai ¼ ½Ai;Bi;Ci;Di�T is the coefficient vector of the ith
layer, XiðlðiÞÞ is a 4� 4 matrix, function of the shear mod-
uli of the ith layer,

Xi ¼ diagð1;1;lðiÞ;lðiÞÞ ð43Þ

biðmðiÞÞ a 4� 4 matrix, function of the ith layer Poisson’s
ratio

bi ¼

1 1 1 1
�1 � 3�4 mðiÞ

4ð1�mðiÞÞ
3�2 mðiÞ
1�4 mðiÞ

1
2

0 2�mðiÞ
mðiÞ�1

4ð1þmðiÞÞ
1�4 mðiÞ �6

0 2 mðiÞ�1
2ðmðiÞ�1Þ

2ð1þmðiÞÞ
1�4 mðiÞ �3

2666664

3777775 ð44Þ

and viðRiÞ a 4� 4 matrix function of the ith layer external
radius.

vi ¼ diagð1;R�1
i ;R2

i ;R
�3
i Þ ð45Þ

To simplify the continuity condition between each layer,
we build the step matrix Ci linking the coefficient vector
ai of the ith layer and aiþ1 of the ðiþ 1Þth layer, such that

aiþ1 ¼ Ci ai ð46Þ

with Ci ¼ v�1
i b�1

iþ1 X�1
iþ1 Xi bi vi. This formulation allows

the determination of all coefficient vectors. Finally, we
build the global transformation matrix Mn so as to solve
the linear system cn ¼Mn c0. This matrix takes the form

Mn ¼ Pn Pn�1; . . . ;P2 P1 ð47Þ

where Pi describes the ith layer behavior and is defined as

Pi ¼ Xi bi vi v�1
i�1 b�1

i X�1
i : ð48Þ
A.3. Force–displacement relationship

The applied force F on the rigid bead is determined by
integrating the stresses over the surface of the rigid sphere.
Carrying out this integration yields to the following rela-
tionship between the applied external force F and the small
bead translation d which is implicitly include in the
expression of the constant B1.

F ¼ 4p lð1Þ B1 ð49Þ
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Notice that we only need one coefficient B1 which could be
determined from the previous linear system. It takes the
form

B1 ¼
R0

3lð1Þ
ð2k2 � k1Þ ð50Þ

where the constants k1 and k2 are explicit functions of the
global transformation matrix components Mij ði; j ¼ 1;4Þ

k1 ¼ d
M14 ðM21 �M22Þ �M24 ðM11 �M12Þ

M13 M24 �M14 M23

� �
ð51aÞ

k2 ¼ d
�M13 ðM21 �M22Þ þM23 ðM11 �M12Þ

M13 M24 �M14 M23

� �
ð51bÞ

Finally, the substitution of constants k1 and k2 in the force–
displacement relationship gives Eq. (12).

Appendix B. The Gaver-Stehfest algorithm for NLTI

Given a Laplace transform �f ðsÞ of an original time space
function f ðtÞ ðt > 0Þ, the function f ðtÞ can be approximated
by the product of the reciprocal of time by a finite linear
combination of the transform values where the Laplace
variable is replaced by ak=t:

f ðtÞ ¼ 1
t

X2ng

k¼1

xk
�f

ak

t

� �
ð52Þ

We used 8 Gaver functionals ðng ¼ 8Þ in this inversion for-
mula with 2ng the number of terms used in the Salzer sum-
mation to accelerate convergence (Valko and Abate, 2004).
The nodesak ¼ k lnð2Þand the weightsxk ¼ fk lnð2Þare real
numbers which only depend on ng . The fk coefficients are
given by Abate and Whitt (2006) in the form

fk ¼ ð�1Þkþng �
Xminðk;2ng Þ

j¼ kþ1
2b c

jng ð2jÞ!
ðjÞ!ðng � jÞ!ðk� jÞ!ð2j� kÞ! ð53Þ

with bzcbeing the greatest integer less than or equal to z. No-
tice that this numerical method remains robust event when
considering purely incompressible layers (i.e. mðiÞ ¼ 1=2).
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